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Abstract. In this paper we show that a nonlinear integral equation for turbulent energy 
transport may be reinterpreted in terms of a Heisenberg-type effective viscosity. A new 
equation is derived for the effective viscosity. This is found to permit general expansions of the 
integral kernels, in powers of wavenumber ratios, leading to local (differential) equations for 
the energy spectrum and effective viscosity. It is found that these equations yield the Kol- 
mogoroff distribution as the inertial-range solution, and that the numerical predictions agree 
quite well with experimental results. The final equations are similar to equations recently 
derived by Nakano, and the relationship between the two theories is discussed. 

1. Introduction 

A local differential equation for the energy spectrum in isotropic turbulence has recently 
been developed (Edwards and McComb 1971) and subsequently applied, in generalized 
form, to a simple turbulent shear flow (Edwards and McComb 1972). The basis of this 
work was a rather phenomenological treatment of the turbulent response function, in 
which the mode lifetime (or effective viscosity) was taken to have known forms in the 
inertial and dissipation ranges of wavenumbers. The main aim of the theory presented 
in these papers was to  simplify existing formalism, with a view to practical applications. 
Thus, although the final equations were found to  be relatively simple and qualitatively 
quite good, no attempt was made at numerical predictions. 

In the present paper, a new equation is obtained for the turbulent effective viscosity. 
It is found to  provide the basis for a more general expansion method (than those re- 
ferred to  above). This leads to a local differential equation for the energy spectrum, which 
appears to be sufficiently accurate for numerical calculations. The work described is also 
found to  be quite closely related to a. recent theory by Nakano (1972) and the two 
theories are compared in $6 .  We begin by briefly reviewing the basic problem and 
some relevant theoretical developments. 

Let us consider isotropic turbulence in an incompressible fluid, which occupies a 
box of side L. If we let the velocity field be U&, t )  then the Fourier components of this 
are defined by 

(1.1) u,(x, t )  = 1 u,(k, t )  eik.=. 
k 

These satisfy the Fourier-transformed Navier-Stokes equation thus : 
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along with the continuity equation, 

k,u,(k, t )  = 0 (1.3) 

(eg see Batchelor 1959). We note that an arbitrary forcing term may be added to (1.2) in 
order to sustain the turbulence. Also, the inertial transfer operator Map,(k)  is given by 

where 

D,p(k) = 6,p - k,kplkl- ’. ( 1 . 5 )  
In order to pursue a statistical treatment, we introduce the correlation of two 

velocities : 

where the form of (1.6) is dictated by isotropy. We note that k,D,,(k) = 0, so that (1.6) 
satisfies the continuity equation; and that qk(t )  is a scalar function, which depends only 
on the magnitude of k .  

The bask problem of turbulence is now plain : if we form an equation for qk(t)  from 
(1.2), the result involves the unknown triple correlation, ( uBuuua). Similarly, the equation 
for the third-order correlation must contain the unknown fourth-order correlation. 
This process may be continued to any order and the problem is to obtain a tractable 
closed set of equations for qk. 

There have been many phenomenological and semi-empirical approaches to this 
subject (eg see Hinze 1959). In general, the most fruitful concept has been to assume that 
the effect of the nonlinear term in (1.2) may be represented by an effective eddy viscosity 
acting on the velocity field. The simplest and most successful (from a fundamental point 
of view) of these theories is probably that due to Heisenberg (1948), who assumed that 
an eddy of given size could only lose energy to eddies of smaller size. That is, the effective 
viscosity for mode k, vk  (say), would only involve a sum over wavenumbers greater than k.  
From dimensional considerations he deduced an energy equation 

= -2(v + vk) I: E(k)k’ dk 
0 

where 

A being a constant, and 

E(k)  = 4nk2qk, (1.9) 
is the energy spectrum. In the limit v -, 0, the steady-state solution of(1.9) may be shown 
to be E(k) 2. kKSl3, which is the well known Kolmogoroff distribution (see Batchelor 
1959). 

Although equation (1.7) is nonlocal in form, the solution it yields was originally 
deduced by Kolmogoroff on the basis of similarity principles, which were equivalent to 
an assumption that energy transfers are local in wavenumber. 

The first similarity principle stated that the statistical distribution of energy in the 
eddies can only depend on the rate of energy input (per unit mass) and the kinematic 
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viscosity. The second principle stated that there will be an inertial range of wavenumbers, 
where the spectrum will be independent of v ,  provided the Reynolds number is large 
enough. 

Dimensional analysis then gave the form 

E ( k )  = U C ~ ’ ~ ~ - ~ / ~  (1.10) 

where tl is a constant and t is the rate of energy input (or dissipation) per unit mass of 
fluid. This result has received considerable experimental confirmation and is now widely 
accepted. The physical picture it suggests for the turbulent energy transfer process is 
appealingly simple. 

However, in recent years, theories of turbulence have moved away from such sim- 
plicity and have invoked the methods of modern statistical mechanics and field theory. 
The pioneering work in this area is due to Kraichnan (1959), who introduced a turbulent 
response function, relating infinitesimal changes in the forces driving the turbulence to 
resulting changes in the velocity field. An iterative solution of the equations of motion led 
to coupled integro-differential equations for the energy spectrum and mean response 
function. This work is known as the direct-interaction approximation. 

On the other hand, Edwards (1964) studied the linear problem of obtaining the 
probability distribution of fluctuating velocities by deriving a generalized Liouville 
equation. This was approximated by an expression with lowest-order operator of the 
Fokker-Planck form and the distribution functional obtained. In this case the addi- 
tional quantity needed for closure was found to arise quite naturally as a dynamical 
friction term (or effective viscosity) in the Fokker-Planck equation. 

It was pointed out by Kraichnan (1964a) that, if the direct-interaction response 
function and energy spectrum were approximated by an exponential decay, with the 
effective viscosity as modal lifetime, then time-independent equations very similar to 
those of Edwards could be obtained. In fact the two energy equations are identical but 
there is a difference in the equations for the effective viscosity. This result was also 
obtained by Herring (1965), who used a self-consistent field method to calculate the 
energy spectrum. 

A reasonable index of performance for these theories may be obtained by using them 
to calculate the Kolmogoroff constant a, in (l.lO), and compare the result with an 
experimental value. (Currently this aspect of turbulence is the subject of some debate : 
see eg Kraichnan 1973 ; but we shall merely take the pragmatic view that (l.lO), or some- 
thing very close to this, has been found experimentally). The result for both the direct- 
interaction and generalized Fokker-Planck theories is that an infinite value is found for 
U .  This is due to a divergence at the origin in the wavenumber integral for the effective 
viscosity. 

A physical interpretation of this has been given by Kraichnan (1964b), who argues 
that, if transfers are to be local, the large eddies will convect small eddies without 
significant distortion or energy transfer. As the mathematical formalism takes no account 
of this separation of length scales, the effect of large eddies (small k) is overestimated. 

Kraichnan (1964b, 1965) has made two attempts to  rectify this situation. In the first, 
a modified form of Navier-Stokes equation (from which all interactions, involving a 
given spatial scale with much larger scales, are removed) is studied. A value of U ,  which 
depends on an arbitrary cut-off ratio, is obtained. 

In the second method, a quasi-lagrangian coordinate system is used and application 
of the direct-interaction approximation leads to  a set of equations which yield the 
Kolmogoroff distribution as the inertial range solution. Unfortunately these equations 
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are extremely complicated and, in order to  permit numerical integration, have to be 
abridged in what seems a rather arbitrary way. 

This problem has also been studied by Edwards and McComb (1969) who obtained 
an equation for the effective viscosity b y  choosing it such that the turbulent entropy 
was maximized. While this method also yields the k-5'3 law as a solution, it is also rather 
complicated and moreover, gives an unacceptably large value for a. 

The formal mathematical structure of the above theories has received a certain 
amount of additional confirmation, eg Wyld (1961), Balescu and Senatorski (1970). 
However, the problem of defining an effective viscosity such that a reasonably simple 
set of equations may be obtained (and an accurate calculation of the Kolmogoroff dis- 
tribution made) remains an obstinate bar to further progress. 

Recently this problem has been tackled by Nakano (1972), who derives a differential 
equation for the energy spectrum, from a direct expansion of the Navier-Stokes equation. 
Although this work is based on arguments similar to those of Kraichnan (1964b) and, 
likewise, contains arbitrary bounds on the wavenumber integrals, it does possess a 
number of interesting features. We shall discuss this theory in some detail, later in the 
present paper. 

While the work described in this paper also involves wavenumber cut-off ratios, it 
will be seen that these arise naturally from the mathematics and are not just based on 
intuition about the physics of the turbulence. 

2. The effective viscosity 

We take as our starting point the equation for qk, which was derived by Edwards (1964): 

where h,  is an arbitrary energy input, to drive the turbulence ; B k j l  = 1 if k + j +  I = 0 but 
zero otherwise and wk is the lifetime of mode k and is related to  the effective viscosity by 

Strictly, equation (2.1) is in steady-state form and 8qk/dt can only describe variations 
in external conditions but not, for example, the turbulent decay. We retain this term for 
the moment as it simplifies the interpretation of (2.1) : later we shall set it equal to zero. 

Equation (2.1) may then be put in words as : 

total change of energy in mode k = rate of doing work on mode k 

-viscous dissipation in mode k +net transfer into k, from other modes. 

The latter may be either positive or negative. Calling this term q, we may express con- 
servation of energy in the form : 

(2.3) 

this result being due to  the cancellation of the two parts of the integrand. We will find it 
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convenient to integrate over I, thus removing the delta function, and obtain 

where 
(k4 + 2k3jp - kj3p)(  1 - p 2 )  

k2 + 2kjp + j 2  
Lkj = 

p being the cosine of the angle between the vectors k andj .  T(k),  as given by (2.4), still 
satisfies equation (2.3). 

Edwards (1964) interpreted T ( k )  as being the difference between input and output 
terms and introduced the diffusion coefficient S(k)  and dynamical friction R(k) ,  such that 

Hence T ( k )  could be written as 

so that equation (2 .1)  became 

(2 .9)  

where 
ok = vk2 + R(k) .  (2.10) 

Thus R(k)  could be interpreted as k2 times the turbulent viscosity. 
Similarly, the direct-interaction approximation, when put in an exponential decay 

framework, leads to equations (2.1), (2 .4)  and (2 .5)  for qk but differs from equation (2 .7)  
for R(k) ,  in that ok does not appear in the denominator. As we pointed out in the intro- 
duction, these theories do not lead to the Kolmogoroff distribution, as the integral in 
(2 .7)  is divergent at j - 0. 

Although (2.6), (2 .7)  and (2 .10)  seem a natural interpretation of T ( k ) ,  Herring (1965) 
has commented that there are many ways of choosing the two functions S(k)  and R(k) ,  
such that the appropriate constraints are satisfied. It has also been pointed out (Edwards 
and McComb 1969), that T ( k )  is only convergent at j - 0 because of the cancellation of 
separately divergent terms. Thus, near j - 0, the modes are not really independent and 
the separation into S(k) and R(k)qk becomes meaningless: only the net change is well 
defined. It is possible both to  meet this latter point, and to achieve a close correspondence 
with the physical ideas of Heisenberg, by defining the effective viscosity in a new way. 
We now do this as follows. 

Let us introduce a wavenumber K ,  such that 

L S K  d3khk = E = -2vLaKd3kk2q,,  (2.1 1 )  

where z is the rate of energy dissipation per unit mass of fluid. In other words, K lies in 
the inertial range of wavenumbers, but is otherwise arbitrary. Consider equation (2.1), 



Local energy-transfer theory of isotropic turbulence 637 

with aqk/at = 0 (steady state): if we integrate the right-hand side with respect to k, we 
have 

d3k(hk - 2Vk2qk + T(k))  = 0. (2.12) 

Let us split up this integration at k = K to obtain 

d3kT(k) = 0 (2.13) 
J k < K  

d3 khk - 
[k<K J k > K  

2Vk2qk d3 k + 

and hence from (2.1 1) (or indeed, directly from (2.3)) 

d 3 k T ( k ) + J  d3kT(k) = 0. s,<, k b K  

Further, from the antisymmetric structure of T ( k )  we may write this out in full as 

d3kT(k) = (J d3kJ  d3j+J  d3kJ  d3j) 
k < K  j b K  k 3 K  j Q K  

(2.14) 

(2.15) 

Then, from (2.11), (2.13) and (2.15) we have the steady-state energy balance in the form 
of two equations : 

(2.16) 

and 

Lkjqj(qlk +il - qk) - 2vk2qk (2.17) 

The physical interpretation of this is that T(k) behaves as a net sink or source of energy, 
according to  the value of k .  At small k (large eddies) T(k)  absorbs all the input energy. 
This energy is transferred (by a conservative process) to ever-increasing wavenumbers. 
At large k (small eddies), the energy is removed by the action of the kinematic viscosity. 

1 > K  d3 k( ' L < K  d3' O k  + Oj f O l k +  ji 

If there were no inertial transfer, then we would simply have 

(2.18) 

As it is, T(k)  exists and equations (2.16) and (2.17) may be regarded as the low and high 
wavenumber forms of (2.18), respectively. 

Now the integral of T(k)  is zero when evaluated between any two wavenumbers in 
the inertial range, so we may write (2.14) in the generalized form 

d3kT(k)+J d3kT(k) = 0, 
k < k i  k b k i  

(2.19) 

provided k,, k2 lie in the inertial range. 
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Making use of this, and adopting the form of energy balance suggested by equation 
(2.18), we write (2.16) and (2.17) in the following way: 

J d3k(H(k)-2vk2qk) = 0, 
k 3 k i  

where vk (the effective viscosity) is given by 

Lkjqj(qlk+jI-qk) 
qk(Wk + Oj + W 1  k + j [ )  

vk = -k- '  d3J 
j 3 k I 

and H(k) (the diffusive input term) is given by 

H(k) = 2 J  d3jLkjqj(qjk+JI-qk) 
j S k Z  O k + O j + o l k + j l  

(2.20) 

(2.21) 

(2.22) 

(2.23) 

It will be seen later that k2vk reduces to R(k), as defined by Edwards, except at small 
wavenumbers, where the difference in form is of crucial importance. 

We may note that as k,  and k, are in the inertial range, but otherwise arbitrary, we 
could make the replacement k ,  = k, = k and all the arguments of this section would 
still apply. However, we should also note that for j - k, the integrals in both (2.22) and 
(2.23) are zero, by cancellation. Thus, for a finite contribution, we have k > j and k < j ,  
respectively. We will find it convenient to put this on a more formal basis by setting 

k ,  = mk 

k, = nk, 
(2.24) 

where m 2 1, n 6 1. 
Also, it can be shown that, in the inertial range, the output part of T(k) may be 

transformed into the input part (and vice versa) by letting k -+ j - ' ,  j + k - ' .  Hence, 
m and n must satisfy 

m = n- ' .  (2.25) 

Alternatively, this relationship may be justified by the physical arguments due to 
Nakano (see 9 6). 

Thus, to summarize, the energy equation is written in analogous form to (2.9): 

(2.26) 

but now ok is given by 

Wk = ( V + V k ) k 2 ,  (2.27) 

where vk is to be obtained from (2.22) and H(k), which is given by (2.33), replaces S(k). 
Finally, in this section, we consider the question of how far the present theory may 

be applied outside the inertial range. 
For the energy-containing range of wavenumbers, the answer to this is by no means 

obvious. However, in this range, the spectrum may be expected to reflect the (arbitrary) 
structure of the input. In this paper we shall therefore restrict our attention to the 
asymptotic spectrum, which may be expected to be independent of the input structure 
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(or, alternatively, the initial conditions). Thus we only consider the behaviour of (2 .22)  
and (2 .23)  in the dissipation region. 

To do this, we need only know that the spectrum falls off very rapidly in the dissipa- 
tion range. Hence, from (2.22),  as k ,  + mk, (where k,  is the Kolmogoroff dissipation 
wavenumber scale), we have the integral for vk tending to zero. That is, 

wk -+ vk2 as k ,  + mk,. (2 .28)  

Similarly, in equation (2.23) for H(k) ,  due to the quadratic nature of the kernel, as 
k ,  + nk,, we may replace the upper limit by j = CO and neglect the second order of 
small quantities. Therefore 

H(k)  + T ( k )  as k ,  + nk,. (2 .29)  

Thus, the energy equation (2 .26)  reduces to 

_ -  aqk - -2vk'qk + T ( k ) ,  
at 

for k > k, ,  (2.30) 

which is just the general form (2 .1) ,  with hk = 0 in the dissipation range. Therefore it 
seems that our formulation goes over smoothly into the dissipation range. 

In the next two sections we will show that both H(k)  and vk may be reduced to simpler 
forms, thus permitting us to obtain analytical solutions for the energy spectra. 

3. A differential form of the energy equation 

In the energy diffusion term H ( k ) ,  the variable j is always less than k,  so we may make 
expansions in powers of j / k .  We will retain non-vanishing terms up to, and including, 
second order. As an example, we write q,k+,I  as 

where 
j 1 j 2  

[ k  2 k 2  
I. = k -p+- - ( 1  - p 2 ) + 0  

and a prime will be used to denote alak, when this is convenient. 
From equation (2 .23) ,  H ( k )  is given by 

Let us call the integrand I, then using (3.1),  this is written as 

(3 .2)  

As we shall see later, w j  varies as j2I3 in the inertial range and as j 2  in the dissipation 
range. For convenience we put 

0. 

2wk 
J = O(A), 

without serious loss of accuracy. Further, as this term makes its lowest non-vanishing 
contribution at O(A3), we will suppress it altogether at this stage. 
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Using this, and equation (3.2) for I., we substitute (3.5) back into (3.3) and evaluate the 
angular integrations, thus : 

)kqjq; qj)., 4; a L k j  

wk 2 wk a k  

(3.7) 

0 1 H(k) = 2 n J ~ j 2 d j ~ : d p [ & ( L k j q j - & i + L , i - - -  1.2 

Ji  1 
- ~ 

O k  

j 2 d j  - d - - j , q , k  4n k2  d q  ) +- 2(4n ---J k2 dqk ., q .  . =21,”* [8k(15 wk a k  k 1 5 0 ,  8k 

Using the relationship 

a nk 
Jonk d j  & = Io d j  - lom djn6(nk - j ) ,  

where 6 is a Dirac delta function, equation (3.7) becomes 

H(k) = (-+:) J j 2  dj- - 47~ k2 J ., q j X -  aqk j2 dj- 4n - k2 j2qjnS(nk-j)L a4 
J o  l5 wk a k  dk k j d n k  15 wk 

(3.8) 
a4 = -+- A2(k)- - A l ( k ) L .  (:k :)( %} dk 

The coefficients are readily seen to be 

A,(k) = - k 2  ST djn6(nk - j ) j 2 E (  j) (3.9) 
1 5 w k  0 

and 

(3.10) 

where we have invoked the relationship E(k) = 47ck2qk, in order to  put A ,  and A ,  in 
terms of the energy spectrum. 
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We complete the work ofthis section by forming the equation for the energy spectrum. 
Substituting (3.8) into equation (2.26) yields for qk 

(3.1 1) 

Then, multiplying both sides of (3.1 1 )  by 4nk2,  we obtain 

for the energy spectrum. 

(3.12) to be solved analytically. 
In the next section we will obtain an approximate equation for ok,  which will allow 

4. A simplified equation for the effective viscosity 

The integrand for the effective viscosity may also be expanded, but this time we consider 
powers of k / j ,  and again retain second-order terms. For example, we may expand qlk +i, 
in the form 

where primes now denote a/aj, when this is convenient. The expansion parameter y is 
given by : 

Let us now write equation (2 .22)  for the effective viscosity, in the form 

Lkjqj(qj+y-qk) 
qk(Ok+ w j +  Oj+ y )  ' 

k2vk = - J d3j 
j 3 m k  

Expanding q j + y  first, gives 

(4 .2)  

(4 .3)  

q.-'-'4,-- q2 y q .  : y q .  . 
k2vk = j d3j L k j  2 (  A) . . .I. (4.4) 

j 3 m k  w k + m j + w j + y [  qk q k  qk 
For J > k ,  we have q j  -= qk and in particular, in the inertial range, qj/qk - O(y' ' I 3 ) .  Thus 
we need retain only the first term on the left-hand side of (4.4) : we put 

k2vk = 

and this may be compared to equation (2.7), for R(k) .  
Expanding wj+? in powers of y ,  equation (4.5) becomes 

k2vk = Lkjqj 
wk+2mj+ymi+qy20y+ . . . 

- - Lkjqj 
d3j2aj(l +)mJmj+$m(i/oj+ . . .)' 

(4.5) 

As in the previous section, we treat 0k/2mj as O(y): again, we find this term makes its 
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lowest non-vanishing contribution in the third order. Accordingly, for manipulative 
convenience we will drop it at this stage. Also, from (2 .5 )  we may show that 

and as this has lowest order O(y), we need only retain terms which are O(y) in the denom- 
inator of (4.6). 

Equation (4.6) is then written as 

and, with the explicit substitution of Lkj and y, the angular integration may be performed 
to yield 

This may be put in terms of the energy spectrum, 

and, finally, we write 

2 E(j) 1 j amj  
dj- 1 +- - ~ 

15 Jmk w j  ( 4 w j  aj 
wk = ( v + v k ) k 2  = v k 2 + - k 2  

(4.10) 

(4.1 1) 

Thus equations (3.12) and (4.1 1) are the necessary two equations for the energy spectrum 
E ( k )  and the total viscosity (or modal lifetime) w k .  

5. Calculation of the energy spectrum 

5.1. The inertial region 

Let us introduce a new quantity, the flux of energy which we will call t (k ) .  If we write 
this as 

a 
ak k2 

c(k) = - k 2 A 2 ( k ) -  - 

then equation (3.12) may be written as 

This equation may be interpreted as : 

rate of change of energy flux = the diffusive input to mode k 
-the dissipation due to viscosity and small eddies. 
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In the inertial range we have, by definition, a balance between the latter two, so that 

- + div c(k)  = 0, aE(k)  
at 

where (div 3 a / a k )  and for the steady state 

div c ( k )  = 0. 

The energy balance is then given by 

(5.3) 

(5.4) 

(5 .5 )  

From (5.4), we have the result appropriate to the inertial range 

c ( k )  = constant = c, (5.6) 
where c is the dissipation rate (see 0 1). Hence, from (5.1) the inertial range spectrum 
satisfies 

and from equation (4.1 l), the inertial range form of ok satisfies 

Direct substitution shows that (5.7) and (5.8) are satisfied by (see 0 1) 

E ( k )  = ~ c ~ / ~ k - ~ / ~  

W k  = / j c 1 / 3 p 3 ,  

(5.7) 

(5.9) 

where U and fi are constants. The inertial range form of (5.8) becomes 

(5.10) 7 1 / 2 , 1 / 2 m - 2 / 3  B = (id 

and substitution of this result and (5.9) into equations (3.9) and (3.10) further yields 
A , ( k )  = ( ~ ) 1 / 2 , 1 / 2 c 1 / 3 m - 2 / 3 k 5 / 3  

A d d  = a 

(5.1 1) 

(5.12) 3 112 1 / 2 C 1 / 3 m - 2 / 3 k 8 / 3 ,  

Making use of (5.9) and (5 .12) ,  equation (5.7) becomes 
= (A) 1 / 2 ( + ~ ) , 3 1 2 , ~  - 2 / 3  (5.13) 

and hence, for the Kolmogoroff constant, 

U = 1.5m4l9. (5.14) 
The terms in the energy balance (5.5) may also be evaluated. From (5.9), (5.10) 

and (5.14) 
14 E 

k 11 k 
2 o k E ( k )  = -2@$ = -- -, (5.15) 

while 
a E(k )  4 c 

2A ak k 2  3 k'  
k (5.16) 
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Substituting these results into (5.5) yields 

where A(k) ,  the difference between (5.15) and (5.16), is given by 

2 E  
33 k 

A ( k )  = - -. 

(5.17) 

(5.18) 

Thus the energy terms balance to within 5 04, which seems quite an acceptable level of 
accuracy. 

5.2. The dissipation region 

At very large wavenumbers, we may expect the kinematic viscosity to play an increasing 
part in the energy balance. Under these circumstances, the energy flux concept is no 
longer helpful and we must use the energy equation, as given by (3.12). The wavenumber 
at which viscous effects become important is normally taken to be given (in order of  
magnitude) by the Kolmogoroff dissipation wavenumber, 

114 

k d  = (5) (5.19) 

which is the only form that can be obtained by dimensions from E and v. 

than a power law in the dissipation region. We will shortly show that 
I t  is known from experiment (Gibson and Schwarz 1963) that E ( k )  falls off faster 

E ( k )  - exp( - k 2 / k i )  

but first we consider the effect of this on the various coefficients in the theory. 
Physically, we expect to have v k  < v in the dissipation region. Consider equation 

(4.10) for the effective viscosity: as k becomes greater than k d ,  E ( k )  rapidly becomes 
small, and tends to zero. Hence we have, 

v k + 0  a s k -  x), 

and as a consequence we can write 

ok -, vk2  for k > k , .  

From (3.9) we have 

and substituting from (5 .20) ,  this becomes 

1 
A , ( k )  = -n3k2E(nk) .  

15v 

The second coefficient is given by (3.10), thus 

(5.20) 

(5.21) 

A 2 ( k )  = ~ k 2  Ink d j j 2 E ( j )  
15% 0 

(5 .22 )  
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and for E( j) an exponentially decreasing function at large j ,  we may write the integral 
in (5.22) as 

a3 

/ Id j j2E( j )  = / djj2E(j) = &, (5.23) 
0 

the last step following from the definition of the dissipation rate, c. Then substituting 
(5.23) and (5.20) into (5.22), A 2 ( k )  becomes 

(5.24) 

Hence, with the substitution of (5.20), (5.21) and (5.23) into (3.12), the steady-state 
energy equation takes the dissipation range form : 

8 E(k)  n3k2 3 E(k)  
-- k 2 - -  -- E(nk)-  -T-2vk2E(k)  = 0. 
3 k 2  :k( dk k' ) 15v dk k 

(5.25) 

The second term is explicitly quadratic in E(k) ,  so we may drop this, with exponentially 
small error. Substituting from (5.19) for k , ,  equation (5.25) then takes the form 

k: d d E(k)  ,,( dk k2  ) k 2 -  __ - k2E(k)  = 0 

which has the asymptotic solution 
- 

E(k)  - exp ( J,"" ;;). 
(5.26) 

(5.27) 

This is consistent with our dissipation range approximations. Exponential decays of the 
general form exp( - k 2 / k i )  have previously been found by Townsend (1951), Edwards 
and McComb (1971) and Nakano (1972). We discuss the latter theory in the next section. 

6. Comparison with Nakano's theory and with experiment 

In a recent paper (Nakano 1972) a theory has been put forward, which, although follow- 
ing a different analytical path from the present theory, is based on similar principles and 
yields very similar results. 

For a given U&, t ) ,  Nakano divides the nonlinear term into contributions from wave- 
numbers larger than k and wavenumbers smaller than k ,  thus : 

He argues that the effect of small eddies ( j  2 mk)  is a net energy loss from mode k and 
may be characterized by an effective viscosity. The effect of large eddies ( j  < nk) is then 
supposed to be a net energy gain by mode k, this being due to  a diffusive flow of energy 
to large wavenumbers. 

Nakano begins by integrating (6.1) forward in time, with j 2 mk. An iterative method 
of solution (equivalent to Kraichnan's) leads to  an equation for the response function 
&(t), which is identical to that derived by Kraichnan (1959). Further assumptions, 
namely ; that 

&(t) = exp(-w,t) = exp[-(v+v,)k2t] (6.2) 
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and that qk( t )  damps slowly compared to  gk(t), followed by an expansion of the wave- 
number integrand in powers of kjj, lead to 

eddies 

where 

The effect of large eddies is then to be found from 

The velocity u,(k+j, t )  is expanded as 

u,(k+j ,  t) = U,(&, t)+j.Vkuy(k, t)+. . . (6.6) 

and substituted into (6.5). 
Nakano argues that the first term in (6.6) gives rise to a rather spurious dissipative 

term, which is relatively inefficient compared to the small eddy effects discussed earlier. 
He neglects this term but it is worthy of note that the analogous term in the present 
theory (see equations (3,1), (3.3) and (3.4)) vanishes by explicit cancellation. He retains 
only the second term in (6.6), which he calls the gradient coupling term. 

Again, an iterative method of solution is used. Equation (6.5), with only the gradient 
term retained. leads to 

where the coefficients are given by 

2 
k,k,B,,(k) = B(k) = - djj2E( j) 

15% 0 

and 

k,C,(k) = C(k)  = - djn6(nk-j)j2E(j) (6.9) 

(note: we use B,, rather than Nakano's D y a ,  to avoid confusion with our own notation 
for the projection operator). 

The cut-off ratios are then related by the principle of action and reaction : it is to be 
expected that, just as an eddy with wavenumberjacts on mode k as an effective viscosity, 
an eddy with wavenumber k distorts an eddy j with an equal reaction. It follows that the 
conditions j 2 mk and nj 

15'k J m  0 

k should be equivalent, or 

m = n- ' .  (6.10) 
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Finally, the energy equation is formed using (6.1), (6.3) and (6.7) to yield 

(6.1 1)  

where vk is given by (6.4), and B(k)  and C ( k )  by equations (6.8) and (6.9). 
These equations may be compared to  the present theory. Beginning with (6.1 1) and 

(3.12), for the energy spectrum, we see that the two are identical in form, with the excep- 
tion of the rather awkward term involving the gradients of the fluctuating velocity 
field, which occurs in Nakano's equation but not in ours. 

Comparing equations ( 6 4 ,  (6.9) for B(k) ,  C(k )  with equations (3.9), (3.10) for A , ( k ) ,  
A 2 ( k )  ofthe present theory, we see that the latter are a factor oftwo smaller, but otherwise 
identical. Similarly, vk as given by equation (4.9) is a factor of two smaller than vk given 
by equation (6.4). 

To see how this difference arises, let us go back to  equation (4.3) for w k .  The 
denominator is expanded in powers of y, thus : 

1 - - 1 
ok+oj+wj+y o k f o j + w j + y w ; + .  . . 

. . .). 

The form of this denominator arises from an underlying assumption that 

(6.12) 

&(t)  i e-wk', 

If we assume this is not the case but (say) 

qk(t )  - e-lk(') 

qk(t)  - e-'"k'. 

then this denominator would be (qk + q j  + w j +  J. 
Now Nakano assumed, in deriving his equation for the effective viscosity, that 

With this assumption, the denominator becomes w j +  and hence its expansion is just 

1 yw'. ____-- -  - 1 - 2 +  . . .  . 1 - 1 
w j + y  wi+y0; w j (  w j  ) (6.13) 

Thus the factors of arise from the use of (6.12) rather than (6.13). 

range and the same form of exponential decay in the dissipation range. 

From Nakano's theory one has 

Not surprisingly, both theories yield the Kolmogoroff distribution in the inertial 

The quantitative aspect may be checked by calculating the Kolmogoroff constant. 

CI = 1.3m4", (6.14) 

whereas the present theory gives 

CI = 1.5m4". (5.14) 
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Nakano arbitrarily takes values ofm = 2,3 and 4 to compare his theory with experiment. 
Doing this, we obtain the following comparative table. 

Table 1. Theoretical values of the Kolmogoroff constant. 

m = 2  m = 3  m = 4  

Nakano (1972) 1.7 2.1 2.3 
Present theory 2.0 2.4 2.6 

These results may be compared with some experimental results in the following table. 

Table 2. Experimental values of the Kolmogoroff constant. 

Kistler and Vrebalovitch Grant et al Gibson Gibson and Schwartz 
(1961) ( 1962) (1 963) ( 1963) 

2.7 1.4 1.6 1.3 

Thus although the theoretical values of c( are rather on the large side (that is, of course, 
assuming that m actually is as large as 2 :  we shall discuss this point later) they fall 
sufficiently well within the experimental range of values to be taken seriously. 

7. Conclusions 

In this work we have taken, as our starting point, an energy equation of the Edwards 
(or Kraichnan) type. We have interpreted it in terms of a Heisenberg-type effective 
viscosity and the result has been a new equation for the latter quantity. It should,perhaps, 
be emphasized that the arguments which lead to equation (2.22) require only that the 
Reynolds number should be large enough for an inertial range to exist : apart from that, 
they are both rigorous and general. The only arbitrary step is the interpretation of 
equation (2.66) in terms of v k :  that is, equation (2.20). However, this interpretation, 
once made, looks so physically obvious and correct that we have few qualms about it. 

In $§ 5 and 6, we believe we have demonstrated the adequacy of our equation for the 
effective viscosity: we find that it leads to equations which, in particular, yield the Kol- 
mogoroff distribution and, in general, are in quite good agreement with experiment. 

One question that has not been settled in this paper is the value to be taken for m. 
Just before equation (2.24) we noted that m was determined by the rate of cancellation 
of the integrand in (2.22), for k - j .  Thus one could quite reasonably obtain m from the 
value of k / j  when the integrand drops to (say) 5 % of its peak value. 

As the terms involved are quite rapidly varying functions of wavenumber it seems 
unlikely that m is any greater than two. As the lower bound on m is unity we might 
suppose that we are faced with 1 < m < 2 and, from equation (5.14), 1.5 < a d 2.0, 
for the Kolmogoroff constant. In fact, a very crude numerical estimate suggests 
m = 1.03 = 1.0 (to our level of accuracy). While this must not be taken too seriously, 
it does raise the question of the convergence of the expansions in @ 3 and 4. 
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Taking the expansion, in powers of j / k ,  which occurs in § 3, we have, as the worst 
case j l k  = l/m. If m - 1, then the expansion is not convergent for all j / k .  However, one 
must remember that the expansion is performed inside the integral, and hence one may 
well have convergence ‘in the mean’. 

Another factor involved, is that both expansions (9 3 and 8 4) are coupled by the 
joint presence of o and q :  this also makes it difficult to pronounce in any definite or 
obvious way on their performance under integration, when m - 1. In this paper we 
have taken the view that ‘point by point’ convergence will be adequate with m - 2, 
and that convergence ‘in the mean’ may be very much better. We think the results 
obtained support the latter supposition. 

In any case, it is hoped to settle questions of this kind, and evaluate m, as part of a 
more general numerical analysis of the theory presented. This will be the subject of 
further work. 

Our final point concerns the energy equation, which was our starting point. This 
equation has been derived by various methods, but, irrespective of the method used, 
certain classes of terms in an expansion are summed to all orders while other terms are 
neglected. To date it has not been shown that higher order terms in the closure expan- 
sion for the energy are small in comparison to the terms retained in (say) equation (2.1). 
It seems reasonable to suppose that the relatively simple analytical techniques of the 
present paper may offer a useful method of attacking this problem. 

References 

Balescu R and Senatorski A 1970 Ann. Phys., N Y  58 587-624 
Batchelor G K 1959 Homogeneous Turbulence (Cambridge: Cambridge University Press) 
Gibson M M 1963 J .  Fluid Mech. 15 161 
Gibson C H and Schwartz W H 1963 J .  Fluid Mech. 16 365 
Grant H L et a1 1962 J .  Fluid Mech. 12 241 
Edwards S F 1964 J .  Fluid Mech. 18 239 
Edwards S F and McComb W D 1969 J .  Phys. A:  Gen. Phys. 2 157-71 

~ I97 1 Proc. R .  Soc. A 325 3 13-21 
~ 1972 Proc. R.  Soc. A 330 495-516 
Heisenberg W 1948 Z.  Phys. 124 628 
Herring J R 1965 Phys. Fluids 8 2219 
Hinze J 0 1959 Turbulence (New York: McGraw-Hill) 
Kistler A K and Vrebalovitch T 1961 Bull. Am. Phys. Soc. 6 207 
Kraichnan R H 1959 J .  Fluid Mech. 5 497 
__ 1964a Phys. Fluids 7 1163 

~ 1965 Phys. Fluids 8 575 
__ 1973 On Kolmogoroff’s Inertial-Range Theories preprint 
Nakano T 1972 Ann. Phys.,NY 73 32G-71 
Townsend A A 1951 Proc. R.  Soc. A 208 534 
Wyld H W 1961 Ann. Phys., N Y  14 143 

~ 1964b Phys. Fluid.? 7 1723 


